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In 1891 Zhukovslll In his paper "On soaring of birds" [1] solved the problem 
of the motion of a body of high lift - drag ratio In an atmosphere of Con- 
stant density. In [2] this problem was considered in greater detail, but 
the basic assumption of a constant density was made here as well. There 
have recently appeared numerous papers concerning the analytical solution 
of the problem of entry Into the atmosphere with orbital and escape velocl- 
ties C3 to 53. But these studies were concerned primarily with the problems 
of ballistic entry and entry with low lift - drag ratio. In considering 
oscillatory states, the authors limited their treatment to small angles 
between the trajectory and local horizon. In the present paper we consider 
the problem without Imposing any llmltatlons on the slope of the trajectory 
or Initial velocity. The case examined will be that of a hypothetical glider 
spacecraft of sufficiently high lift - drag ratio. It Is Interesting to note 
that the solution of this problem reduces to the solution of Zhukovskll's 
problem, but for a; atmosphere of variable density. The associated trajec- 
tories are termed fugold . All of our assumptions about the parameters of 
such a glider are of a particular hypothetical character. 

19 Stgtasnnt oi thr-problem. Let us consider the motion of a body of 
high lift - drag ratio In a great circle plane of a spherical nonrotatlng 
planet with an Isothermal atmosphere. 

The motion of such a body Is described by the following system of equa- 
tions: 

dv C,S dlf 
--- - =z L: sin 0 
dt - 

gsin8 -z pv", dt 

(10 
tit= 

cos e (IA) 

with the initial conditions 

t = 0, v = vo, 0 z 00, II = II". I. = 0 

Here p,,, g, are the atmospheric density and gravitational acceleration 
at the planet's surface, respectively; )i Is the atmosphere Index, u Is 
the absolute value of the velocity vector In the associated coordinate sys- 
tem (Flg.1); 13 Is the angle between the trajectory and local horizon; H 
Is the altitude of the body above the planet's surface; L Is the distance 
flown as measured along the great circle arc; R 1s the radius of the planet; 
m, 5. 3 c., k are the mass of the body, the body reference area, the drag 
coefficient and the lift - drag ratio of the body, respectively. These quan- 
titles are assumed constant. 
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We shall consider the portion of the trajectory having the following pro- 

~zy;) . 
the altitude of the body 1s much less than the radius of the planet 

Then with sufflcent accouracy we can assume that 

R + HsR, g= go (4.2) 

Let ua introduce the following dimensionless variables: 

p = hR (1.3) 

Substituting (1.3) into (1.1) and taking account of (l-2), we find that 

dV --- 
dz - sin0 - n 

dh 
- = V sin 0, dz $= vcose 

(ut) 

( ‘=-‘i with initial conditions 

~~0, n=n’, o=tj”, V=z&“, h-h”, 1~0 

\ / 
The first three equations of (1.4) form a 

closed system. The solutions for h and L if' 
u n, V, i are bown are obtained in quadratures. 

We shall consider a body of high lift - drag 
Flg. 1 ratio and low drag. Physically, this means that 

the avvstem la nearly conservative and that the 
dleaipative forces are small. 6 the other ha&i, the lift, which curves the 
trafectory without doi 

T 
work, plays a substantial role. A system of this 

type was considered in 1, 2 and 5). 

Upon entry of the spacecraft into the planet's atmosphere, the axial over- 
load (and hence the drag) must be small, since the thermal shielding and crew 
tolerance are restrictive factors. The maximum overload can be reduced by 
effecting entry with a lift - 
values [3]. 

drag ratio which can attain quite substantial 
It Is obvious, therefore, that the present problem Is of lmme- 

dlate practical interest. 

2. Iwertigbtlon oi the teroth approximrtfon. We introduce the small 
parameter E 5 0 as follows. Let the quantities 

n= 0, K = ok. (2.1) 

be of the order of unity. In realty, e Is equal In order of magnitude to 
the ratio of the energy released over the flight time In the form of heat, 
to the tutal energy of the body at the instant of entry. Usually this ratio 
1s of the order of lcf' or smaller. On the other hand, oa can be defined 
as the ratio of the mean overload during flight time to the lift - drag ratio. 

Substituting (2.1) Into (1.4) and making B go to zero, we obtain the 
generating system for (1.4) In the form 

dNo -- 
dr - - NO sin B. ff~V, + $-) * V. 2 = cm eo (Vo2 - 1) + KN,~ 

dVo 
g = vo cos 80, 

db 
ds= -sin 60, z= Vosini30 

(2.2) 

under the initial conditions 

z = 0, No= No, 0, = t3", v. = V", h,, = ho, lo = 0 

Here Fo,tro,~O,~o,ha Is the solution of the generating system. Let 
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us conaider the first three equations of (2.2), which form a closed SYStem. 
!Phis system has integrals of the form 

Here 

Let us analyze the qualitative picture of the 
solutions of the generating system. We consider 
(2.3). Relating C, and cz to the initial condltlons, we obtain 

motion determined by the 
the first two integrals from 

ealK'-l) 
coseo=------- 

E 

E2,%(5’--L) dc _I- c(,s 00 

3 
1 

(2.4) 

f = v, I V”, al = V2(Vy- a2 = V2 (8 - 1) (V”12 

Since (P)“- 1 
group (Venus, Ear&, 

and since a _ la3 for the planets of the terrestrial 
Mars), we estimate the integral in (2.4) by expanding 

It asymptotically In the parameter l/o, = 2 /((/3 - 1) V”)z -1/6m. 

Integrating by parts, we obtain 

(2.5) 

Substituting (2.5) Into (2.4) and limiting ourselves to terms of the order 
~(a~-~), we have /+(4*-l) &Q 

COS@o~: 
E i 

-Lj-& [@?a'(+') -i] + me”} (2.6) 

Let us consider the behavior of the two-parameter c'pves COS 90- f(<, 
COB $0, &j") on the phase plane RO , 
5 as a function of the values of the 
parameters and of coa e", Im'. 

The parameter hn" determines the 
Initial lift value . Fig.2 show8 the 
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family of curves 5 = f(e,) for cos e"- 0.9 ; moreover, vo= J2 ) which 
corresponds to entry with the escape velocity. 
the V8lIXM hn”- 2, aa, 2ua . 

Curves 1, 2, 3 correspond to 

Fig.3 shows the family of curves p; - Y(e,) for kn*- 2, 
the three values cos 0'~ 1, t, 0 . 

VU - J2 for 

The hase diagrams show that the motion is periodic with respect to velo- 
city. P The phase trajectories are closed). 

The curves In Figs.2 and 3 are shown In polar coordinates. 

We see from these curves that the trajectories can be broken down into 
two types. 

I) In the case - h < t&e *IT the motion Is purely oscillatory. Such 
motions will be called "fugold". Flg.4a shows the trajectory of such a 

tff 4 

flight. The corresponding phase trajecto- 
ries are 1, 2 in Figs.2 and 3. It is clear 
that trajectories of this tgpe occur upon 
fulfllment of the condition 

Fig. 4 

cos 90 > 0 

It then follows from (2.6) that 

(2.7) 

,adt'-l), k,f 

...--.- z [Ee { 
a&?-1) 

E 
-I] +coseo >o (2.8) \ 

Since eul(E*-t)/ % >O for any %>O , then 
(2.8) is equivalent to the condition 

kn’ 

z ce %(ES-l) kn’ 
+ cm 0” > z 

On entry Into the atmosphere cos 
always positive, 80 that for 5 > 1 
tion (2.9) is always fulfilled. For 
the term 

(2.9) 

El0 is 
condl- 
<<I 

Is small as compared with unity. Hence, In 
this aase condition (2.9) is equivalent to 
the condition 

knD 
cos@“> G 

kn” 
*I COSfP > (8 _ if .$a2 Qo, 

2) On certain portions of the trajectory /go 1 2 &T. In this case the 
velocity vector rotates. The approximate shape of such trajectories Is 
shown in Pigs. 4b and 4c ; these will be termed "loop" trajectories. It 18 
clear that such trajectories occur upon fulfllment of the condition that 

kilo kna - F;ea@--1) + cos 0” < - 
2a2 2a2 

(2.11) 

for soms 5 cos ffos 0 (I.e. for some 5 ) . 
It is easy to see that upon fulfllment of the condition 

there will always be 8 5 (0 c 5 < 1) such that condition (2.11) Is fulfilled. 
Just as In the above case, (2.12) csn be written as 

kn” 
(2.13) 
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the following statement can be formulate<: occurrence of a "loOptl 
tra~k%?~'requlres fulfilment of condition (2.13); upon fulfllment of con- 
dition (2.10), the trajectory will be of the fugoLd type. 

We note that the system originally considered is dissipative, so that 
after a time the )(looplt motion becomes fugold, the latter in turn becoming 
motion wherein the trajectory inclination angle varies monotonously. Hence, 
the foregoing conditions are merely necessary. 

In conclusion, let us write out the expressions for the maximum and mini- 
mum velocities for these types of trajectories. 

It is easy to see that the ~x~rnum and minimum velocities can be deter- 
mined from Equation 

I cos &)I = 1 (2.14) 
From (2.6) we find that 

Here V"T* is the extremal velocity. For ttloop*' trajectories (2.15) 
breaks down into two equations: 

that for finding the maximum velocity 

g [g*ea2K*~-l) _ 11 + COSe~=~=e~~(~-~*') (E'>f) (2.16) 

and. that for finding the minimum velocity 

k& [,I _ E*eaX(;*z--l1] -f_ eOSea = ~+em--E’*) (4’ < 1) (2.17) 

If the trajectory under consideration corresponds to fugoid motion, we 
have a single equation which must have not less than two solutions correspond- 
ing to the maximum and mlnlmum velocities, 

~&[~*@""-l _ I] fcos$" a E*e%(l--E*') (2.18) 

In order to find the approximate solution of (2.16) we assume that 5* 
is not much different from unity. (The phase trajectories shown in Figs. 2 
and 3 show that such an assumption Is quite realistic). The approximate 
value of p Is then given by Formula 

4'==:1+ 
2us (1 - cos P) 

kd’ + 2ae (kd’ - 1) + 4c.w~ 

which c&n be written as 

V max=V" 1+ 
I 

(~-~)(V"~/Rgo)(2--cose") 

/cd' + (fi - 1) (v"2/ Rgo) (kd’ - 1) + (p - 1) (vo2/ R2g02) I 
(2.19) 

In attempting to find the approximate solution of (2.18) we assumf? that 
c* is small. 

Then, neglecting the term E* sxp kQ($*'- i)l as compared with unity and 
neglecting terms of the order of T*;+" , we obtain 

i 

kn” 
c *e.,e-al - 

2a2 
-+ ~0~00 9 or 

) 
“mi* TZ v’exp (-&) [ C;y :$1 j- cos 0’1 (2.20) 

In solving Equation (2.18) approximately, we6as;EAy;t 
represented in the form ?&.a*- 1 T (i , where 

f*,s can be 
_ Ttl en, neglecting 

terms of the order of ba and higher, we obtain 

<I,?* s 1 + 
2aa(l -cos ey 

kn” + 2~2 (kn” - 1) + 4maz 
(2.2i) 

or 

V* 
1,2=" 

(p- i)(v"2/Rgo)(i -case") 

' r kn" +(p- l)(v"~/Rgo) (kn”-l)+(j3-l)(v”4/RPgdL 
(2.22) 
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Here the plus sign corresponds to the maximum, and the minus sign to the 
minimum velocity. 

Knowing the first Integral of the motion, we can use the averaging tech- 
nique presented in [63 to construct the next approximation, which makes It 
possible to evaluate the effect of dissipative terms on the trajectory. 
Because of the analytical difficulties involved ln constructing the next 
approximation, the latter will not be examined In the present paper. For 
this reason, the grobl$m as to the character of the transition of the tra- 
Jectory from the loop type to an ordinary fugold one and the subsequent 
damping of the fugold oscillations remains unsolved. Not having an analytic 
expression for time of motion along each of the "loop" motion, we are also 
unable to specify the number of euch loops which the spacecraft executes 
before the motion becomes one of the ordinary fugold type. 

We note that the derived conditions for the realization of each given type 
of motion are merely necessary, since the effect of dissipative forces may 
be large enough to produce a transition from ?oop" motion to fugold motion 
In the very Plrst loop, and a transition from the latter to motion with mono- 
tonous variation of the trajectory angle during the very first oscillation. 
The sufficient conditions can be obtained by analyzing the equations of the 
first approximation. 

On the other hand. It Is vem Interestinn that the entry of a sDacecraft 
Into the atmosphere can Involve-" 100~~ mot&s In addition-to the conven- 
tlonal fugold oscillations which have been Investigated In detail. Since 
the qualitative nature of these motions Is the samii as that of ordinary 
fugbld ones, we Include them in the broader class of general fugold motions. 

The author Is grateful to N.N. Molseev for valuable advice and discussions. 
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