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In 1891 Zhukovslil 1n his paper "On soaring of birds" [1] solved the problem
of the motlon of a body of high 1ift — drag ratio in an atmosphere of con-
stant density. In [2] this problem was considered in greater detail, but
the basic assumption of a constant density was made here as well. There
have recently appeared numerous papers concerning the analytical solution

of the problem of entry into the atmosphere with orbital and escape veloci-
tles [3 to 5]. But these studles were concerned primarily with the problems
of ballistic entry and entry with low 1lift — drag ratlo. In considering
oscillatory states, the authors limited their treatment to small angles
between the trajectory and local horizon. In the present paper we consider
the problem without imposing any limitations on the slope of the trajectory
or initial velocity. The case examined will be that of & hypothetical glider
spacecraft of sufficiently high 1ift — drag ratio. It is interesting to note
that the solution of this problem reduces to the solution of Zhukovskii's
problem, but for an atmosehere of variable density. The assoclated trajec-
tories are termed "fugoid". All of our assumptions about the parameters of
such a glider are of a particular hypothetical character.

1, Statement of the problem. Let us consider the motion of a body of
high 1ift — drag ratio in a great circle plane of a spherilcal nonrotating
planet with an isothermal atmosphere.

The motion of such a body is described by the following system of equa-
tions:

dv . xS i
W:_gslne_z—’:l;pv, E—:usme
" » g _ ke S il_[_' — ‘
LU cUSB<m — 7> + =, P 7 =veosH (1.1)
R
<p = poe“"lII, g =£8o (7?79:_77}5>

with the initial conditions
t=0, v=2° 0=0°, H=1H° L=0

Here oo, Go are the atmospheric denslty and gravitational acceleration
at the planet's surface, respectively; A 1s the atmosphere 1ndex, v 1is
the absolute value of the veloclity vector in the assoclated coordinate sys-
tem (Fig.1); 6 1s the angle between the trajectory and local horizon; ¥
i1s the altitude of the body above the planet's surface; L 18 the distance
flown as measured along the great circle arc; R 1s the radius of the planet;
m, S, Cx, # are the mass of the body, the body reference area, the drag
coefficient and the 1ift — drag ratio of the body, respectively. These quan-
titles are assumed constant.
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We shall consilder the portion of the trajectory having the following pro-
perty: the altitude of the body 1s much less than the radius of the planet
(F<PR) . Then with sufficent accouracy we can assume that

R+ H=~R, g g 1.2)

Let us introduce the following dimensionless variables:
C.S » go \Vz H L
P ¥4 et . = e —— —— — 3
"‘“ngg pz,V_v}?g‘;, rm(ﬁ)i, h-R, l_Rv B=A4R (1.3}

Substituting (1.3) into (1.1) and taking account of {1.2), we find that

dan . . 2 2n?
E:—nsm@(fﬂ/ +7) A
8 dv .
» E—;:—-—sxnﬂ——n
H Vg =cos0(V2—1) 4 kn
d

h . dl
d—f:VsmG, E:Vcos&
with initlal conditilons
'[=0’ ::}10’ zeo, V:‘Vo, ::'::hc” l:O

The first three equations of {1.%) form a
closed system. The solutions for h and £ 1if
n, V, 8 are known are obtalned Iin quadratures.

We shall consider a2 body of high 1ift — drag
Pig. 1 ratio and low drag. Physically, this means that
the system is nearly conservative and that the
dissipative forces are small. On the other hand, the l1ift, which curves the
trajectory without doi work, plays a substantial role. A system of this
type was consldered in [1, 2 and 5].

Upon entry of the spacecraft into the planet's atmosphere, the axial over-
load (and hence the drag) must be small, since the thermal shielding and crew
tolerance are restrictive factors. The maximum overload can be reduced by
effecting entry with a 1ift — drag ratio which can attain quite substantial
values {3]. It is obvious, therefore, that the present problem is of imme-
diate practical interest.
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2, Investigation of the zeroth approximation, We introduce the small
parameter ¢ > O as follows. Let the quantitles

n = eN, K = &k @1

be of the order of unity. In realty, e 1is equal in order of magnitude to
the ratio of the energy released over the flight time in the form of heat,

to the total energy of the body at the instant of entry. Usually this ratlo
is of the order of 10°! or smaller. On the other hand, ¢® can be defined
as the ratic of the mean overload during flight time to the 1ift — drag ratio.

Substituting (2.1) into (1.4) and making ¢ go to zero, we obtain the
generating system for (1.4) in the form

dN ! 2 a6
CEe = —Nosin® (ot 7o) Vo = cos b (V2 — 1) + KN,
2.2
dVa . d gi] hﬂ = ( )
a—; 2 weee S1TY 69, "d—,é’ = Vo ¢Os Bg, "t‘i‘:r“ == Vg Sin Bo

under the initial conditions
T=0, N0=N°, 00—“=9°, V0=Vo, h():ho, 1030
Here Ny, Vo, 8¢, 2o, he 18 the solution of the generating system, Let
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us consider the first three equations of (2.2}, which form a closed system,
This system has integrals of the form
My exp (- B
Vo“ &

> = ¢y == const

Vy
Vo? ¢

cas BgVpexp (-—- '-3—) — Key \ Vot exp (B D) V(,?) dVo = ¢, == const
Vo

v,
: VedVo ,
LV —(0: + Ko Pexp Ve

1 == ¢3 = const

Here

J= Sv exp(B 5 ! Veldv, (B>
J

Let us analyze the qualitative picture of the motion determined by the
solutions of the generating system. We consider the first two integrals from
{2.3). Relating ¢, and ¢, to the initlal conditions, we obtain

g
ay(g—1) i
€050y = 5—EJ-~ {kno 3 £2e%:05" =1 g% 1 cos 60} (2.4)
1

E=V,/V°, oy = Ye(V°)2 =1/, (B — 1) (V)

Since (V°)*~1 , and since g ~ 10° for the planets of the terrestrial
group (Venus, Earth, Mars), we estimate the integral in (2.4) by expanding
it asymptotically in the parameter f{/a,= 2/ ((B — 1) V°)® ~ gy

Integrating by parts, we obtain

Y
«

- N 1 22
e i~e"2*2d§:12i;{£e“’(‘ —1>-1}+0(a2-2) (2.5)
i
Substituting (2.5) into (2.4) and limiting ourselves to terms of the order
0(as~t), we have SEEY) (oo
cos By =~ —F {m [Eem2=D _ 1] - cosﬂ"} (2.6)

Let us consider the behavior of the two-parameter cirves cos 8= S(Z,
cos §°, #n°) on the phase plane 8, ,
g as a function of the values of the
parameters and of c¢os 9°, mm°

The parameter #n° determlnes the
initial 1ift value . Fig.2 shows the
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family of curves € = f(8,) for cos §°= 0.9 ; moreover, I°= /2 , which
corresponds to entry with the escape velocity. Curves 1, 2, 3 correspond to
the values n’m= 2, Tas 2(12 .

Fig.3 shows the family of curves E = f{8o,) for m°= 2, V° = /2 for
the three values cos #%°« 1, %, O .

The phase diagrams show that the motlon 1s perilodic with respect to velo~
city, (The phase trajJectories are closed).

The curves in PFPigs.2 and 3 are shown in polar coordinates.

We see from these curves that the trajectories can be broken down into
two types.

1) 1In the case — #7 < 6o< % the motion 1s purely oscillatory. Such
motions will be called "fugold". Fig.#a shows the trajectory of such a
flight. The corresponding phase trajecto-
ries are 1, 2 in Flgs.2 and 3. It 1s clear

H a) that trajectories of this type occur upon
fulfilment of the condition
cos B, >0 2.7
v It then follows from (2.6) that
A
— (&1, (g0
¢ — {_z_la._ [geﬂl:(ﬁ’—l) —1] +cos 90} >0 (2.8)
b) 2
H Since e#&*V/E>( for any E>0, then
{2.8) 1s equivalent to the condition
kna k [+
s Ee®(E 1) o 605 0° > : (2.9)
v . 2a; 203
On entry into the atmosphere cos §° 1is
always positive, so that for £ > 1 condi-
H ) tion (2.9) is always fulfilled. For £ < 1
A

the term
kn® o ea
il {8*—-1)
2’1226 ’
is small as compared with unity. Hence, in

1% L this case condition (2.9) 1s equivalent to
— the condition

60 ifio 80 Wknl’
Fig. 4 cos6° > 2%, O ©0s > B Rgo,
(B—1) 2
Oy = Z—Rgo—. (2.10)

2) On certain portions of the trajectory |6o| = #n. In this case the
velocity vector rotates. The approximate shape of such trajectories is
shown in Figs, 4b and 4c ; these will be termed "loop" trajectories. It is
clear that such trajectories occur upon fulfilment of the condition that

° °
o ge%E D { cos6° ken? @.11)
2&2 2“2

for some £ co8 gos O (l.e. for some g ) .

It is easy to see that upon fulfilment of the condition
kn®
PrA
there will always be & £ (0 < £ < 1) such that condition (2.11) is fulfilled.
Just as in the above case, (2.12) can be written as

cose°<-LR (2.13)
SE—nor >

cos0° (2.12)
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Finally, the following statement can be formulated: occurrence of a "loop
trajectory requires fulfilment of condition {(2.13); wupon fulfilment of con-
dition (2.10), the trajectory will be of the fugold type.

We note that the system originally considered is disslpative, so that
after a fime the "loop” motion becomes fugoid, the latter in turn becoming
motion wherein the trajectory inclination angle varles monotoncusly. Hence,
the foregoing conditlons are merely necessary.

In conclusion, let us write out the expressions for the maximum and mini-
mum velocltles for these types of trajectories.

It is easy to see that the maximum and minimum velocities can be deter-
mined from Equation

|cos By =1 (2.14)
From (2.6) we find that
kn® ®a(Z4—1) aE—1
Ty 1% — 1] 4 cosf” | = gre M (2.15)

Here V°g* is the extremal velocity. For "loop" trajectorles {2.15)
breaks down intc two equations:

that for finding the maximum velocity

kn® 2 E¥

g [£% D 4] cos 0 =gmen 5 (g > 1) (2.16)
and that for finding the minimum velocity

kn® %2 e, ¥

2—@% [ — E*e®E D] 4 cos0° = g2e@(A2 (zr L) 2.17)

If the trajectory under consideration corresponds to fugoid motion, we
have a single equation which must have not less than two solutlions correspond-
ing to the maximum and minimum velocitles,
“kn®
2&3
In order to find the approximate solution of {2.16) we assume that g%
is not much different from unity. (The phase trajectoriles shown in Figs, 2

and 3 show that such an assumption 1s quite realistic). The approximate
value of #* is then given by Formula

. 203 (1 — cos 8°%)
At 5 20, (ke — 1) F bonda

[E*%E"1) 4] 4 cos0° = EremI—ED (2.18)

which can be written as
P y® {1 (38— 1) (v°2/ Rgo) (1 — c0s 6°)
max T F B =D (7] Rgo) (kn° — D)+ B— 1) (oY R
In attempting to find the approximate solution of (2.18) we assume that
g* is small.

Then, neglecting the term &* exp [&, (§** — 1)] as compared with unity and
neglecting terms of the order of £%** , we obtain

o e 02 kn°
o (B o) o o= o () [ e o] o0

In solving Equation (2.18) approximately, we assume that g*,, can be
represented in the form g, = 1 T 6 , where & 1s small. en, neglecting
terms of the order of &® and higher, we obtain

205 (1 —cos 8°)

} (2.19)

-]

2&2

gl,g* ~1F e T 2a, (kno — 1) T b, (22‘1)
or
* ol = (B—1)(v°?/ Rgo) (1 —c0s 6°)
M {1 TR E— D Y Rgo>(kn°——1)+<B—1)(v°4/mgo‘*} (2.22)
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Here the plus sign corresponds to the maximum, and the minus sign to the
minimum velocity.

Knowing the first integral of the motlon, we can use the averaging tech-
nique presented in [6] to. construct the next approximation, which makes it
possible to evaluate the effect of dissipative terms on the trajectory.
Because of the analytical difficulties involved in constructing the next
approximation, the latter will not be examined in the present paper. For
this reason, the eroblem as to the character of the transition of the tra-
Jectory from the "loop" type to an ordinary fugold one and the subsequent
damping of the fugoid oscillations remalns unsolved. Not having an analytic
expression for time of motion along each of the "loop" motion, we are also
unable to specify the number of guch loops which the spacecraft executes
before the motion becomes one of the ordilnary fugold type.

We note that the derived conditions for the reallzation of each given type
of motion are merely necessary, since the effect of dissipative forces may
be large enough to produce a transition from "loop" motion to fugoid motion
in the very first loop, and a transition from the latter to motion with mono~
tonous variation of the trajectory angle during the very first osclllation.
The sufficlent condlitions can be obtained by analyzing the equations of the
first approximation.

On the other hand, 1t 1s very Interesting that the entry of a spacecraft
into the atmosphere can involve "loop" motions in addition to the conven-
tional fugoid oscillations which have been investigated in detall. Since
the qualitative nature of these motions 1s the same as that of ordinary
fugold ones, we include them in the broader class of general fugoild motions.

The author is grateful to N.N. Moiseev for valuable advice and discussions.
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